Stantec Australia Pty Ltd

Level 6, Building B, 207 Pacific Highway St Leonards NSW 2065 Tel: +61 2 8484 7000 Email: enquiries.sdy@stantec.com www.stantec.com

18 March 2022

Enquiries: Francisco Toledo Silva Project No: TBC

Chalet 1/11 Crackenback Drive, Thredbo NSW, 2625

Attention: Mark Brown

Dear Mark

RE: Structural Engineering Assessment Chalet 1/11 Crackenback Drive, Thredbo – Loadbearing Capacity Existing Building.

Stantec have been engaged to review the proposed alterations to the internal works for a new mezzanine floor for the loadbearing capacity of the building as denoted on plan.

A structural assessment has been done and the proposed works reviewed in accordance with the existing structural arrangements as per site photos and provided drawing. The load bearing capacity of the existing foundations for the proposed construction is suitable and the proposed works present no geotechnical impact on the site or related land. It is noted that proposed works will be completed by an appropriately qualified and licenced contractor.

Stantec have reviewed, assessed and deem the proposed alterations as feasible.

Yours sincerely

Toleaghter

Francisco Toledo Silva

Structural Project Engineer, Associate

BEng(Hons) GradCertEng(Structural)

for Stantec

Structural Project Engineer (Review);

Signature:

Date:

18/03/22

Michael Ruescher

Structural Project Engineer, Associate

BEng BSc MIEAust NER (2378509)

Design with community in mind

Appendix A General Arrangement

- GENERAL NOTES: ALL WORK TO COMPLY WITH BUILDING CODE OF AUSTRALIA, REQUIREMENTS OF RELEVANT STATUTORY AUTHORITIES/ LOCAL GOVERNMENT & RELEVANT AUSTRALIAN BUILDING STANDARDS
- CONTRACTOR TO VERIFY ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK- SHOULD A DISCREPANCY BE IDENTIFIED PLEASE CONFIRM WITH ARCHITECT PRIOR TO PROCEEDING (DO NOT SCALE FROM DRAWINGS)
- ALL DRAWINGS TO BE READ IN CONJUNCTION WITH ALL RELEVANT DISCIPLINES SUCH AS SCHEDULES, BASIX CERTIFICATE & NATHERS SPEC, BCA & ACCESS REPORTS, STRUCTURAL, CIVIL, MECHANICAL, ELECTRICAL, HYDRAULIC, LANDSCAPE DRAWINGS,
- COPYRIGHT OF DESIGN SHOWN HEREON IS RETAINED BY BS ARCHITECTS AND AUTHORITY IS REQUIRED FOR ANY REPRODUCTION
 WHEN PROPRIETARY PRODUCTS ARE REFERRED TO, INSTALL IN ACCORDANCE WITH THE MANUFACTURERS WRITTEN INSTRUCTIONS ARCHITECTURAL PLANS TO BE READ IN CONJUNCTION WITH CONSULTANT'S DRAWINGS, SPECIFICATIONS & REPORTS

WALL HATCH LEGEND:

- EXISTING STUD WALL
- EXISTING BRICK WORK
- PROPOSED STUD WALL

+ 1590 + 1270 + 370 ★ + + +

→ 3230 ↓ 4140 ↓ 1650 ↓

	AMENDM	ENTS	
PROJECT:	ISSUE	DATE	DESCRIPTION
	P1	24/08/21	PRELIMINARY ISSUE 1
PROPOSED INTERIOR ALTERATION	P2	19/10/21	PRELIMINARY ISSUE 2
	DA	21/11/21	DEVELOPMENT APPLICATION ISSUE
/ 11 CRACKENBACK RIDGE, THREDBO VILLAGE			

CLIENT	Kim	and	Graham	Selig
--------	-----	-----	--------	-------

 GENERAL NOTES: ALL WORK TO COMPLY WITH BUILDING CODE OF AUSTRALIA, REQUIREMENTS OF RELEVANT STATUTORY AUTHORITIES/ LOCAL GOVERNMENT & RELEVANT AUSTRALIAN BUILDING STANDARDS CONTRACTOR TO VERIFY ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK- SHOULD A DISCREPANCY BE IDENTIFIED PLEASE CONFIRM WITH ARCHITECT PRIOR TO PROCEEDING (DO NOT SCALE FROM DRAWINGS) ALL DRAWINGS TO BE READ IN CONJUNCTION WITH ALL RELEVANT DISCIPLINES SUCH AS SCHEDULES, BASIX CERTIFICATE & NATHERS SPEC, BCA & ACCESS REPORTS, STRUCTURAL, CIVIL, MECHANICAL, ELECTRICAL, HYDRAULIC, LANDSCAPE DRAWINGS, ETC. COPYRIGHT OF DESIGN SHOWN HEREON IS RETAINED BY BS ARCHITECTS AND AUTHORITY IS REQUIRED FOR ANY REPRODUCTION WHEN PROPRIETARY PRODUCTS ARE REFERRED TO, INSTALL IN ACCORDANCE WITH THE MANUFACTURERS WRITTEN INSTRUCTIONS ARCHITECTURAL PLANS TO BE READ IN CONJUNCTION WITH CONSULTANT'S DRAWINGS, SPECIFICATIONS & REPORTS 	LEGEND:WALL HATCH LEGEND:COSCONFIRM ON SITE EQUAL DISTANCE DEXISTING STUD WALLDDOOR WEXISTING BRICK WORKTLTILE CPT CARPET TBEXISTING BRICK WORKDTIMBER BOARDPROPOSED STUD WALL
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

O1 LEVEL 2 FLOOR PLAN - SCALE 1:100 @ A3

W 8

1250	750	600	700	1460	2160
110 1000	2030	1000	900	1080 F	900 940 90
	3230	1		4140	+ 770

LOFT HANDRAIL

VOID

(W) 7) W01

AMENDMENTS						
PROJECT:	ISSUE	DATE	DESCRIPTION			
	P1	24/08/21	PRELIMINARY ISSUE 1			
PROPOSED INTERIOR ALTERATION	P2	19/10/21	PRELIMINARY ISSUE 2			
	DA	21/11/21	DEVELOPMENT APPLICATION ISSUE			
1 / 11 CRACKENBACK RIDGE, THREDBO VILLAGE						

+ + 11

ISSUE	DATE	DESCRIPTION	N	
				.3
				.1
				П

	DA-A2002
85 ARCHITECTS	LEVEL 2 FLOOR PLAN (PROPOSED)
BS ARCHITECTUR 733 Bourke Street, Redfern NSW 2010 P - (+61) 402 117 955 E - B.D.Selig@gmail.com W - Benjaminselig.com	ISSUE - DA NOVEMBER 2021

Appendix B Calculation Pack

Tekla Tedds	Project Job Ref. Thredbo - 1 Crackenback Drive TBC						
rel 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Beam 1 (BM01	tion Sheet no./rev. 2					
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date	
				Imposed	d × 1.50		
		Support B		Perman	ent × 1.20		
				Imposed	d × 1.50		
Analysis results							
Maximum moment		M _{max} = 30.6 k	Nm	M _{min} = 0	kNm		
Maximum shear		V _{max} = 29.9 kľ	N	V _{min} = -2	29.9 kN		
Deflection		δ _{max} = 9.3 mm	l 	δ _{min} = 0	mm		
Maximum reaction at support A		R _{A_max} = 29.9	kN	R _{A_min} =	29.9 kN		
Unfactored permanent load reactio	n at support A	R_{A} Permanent = 9) KN				
Unfactored imposed load reaction a	at support A	$R_{A_{Imposed}} = 12$	2.8 KN	_			
Maximum reaction at support B		R _{B_max} = 29.9	kN	R _{B_min} =	29.9 kN		
Unfactored permanent load reactio	n at support B	$R_{B}_{Permanent} = 9$) KN				
Unfactored imposed load reaction a	at support B	R _{B_Imposed} = 12	2.8 kN				
Section details							
Section type		200x22.3 UB	(AISC 1994)				
Steel grade		300					
From table 2.1: Strengths of stee	ls						
Thickness of material		t = max(t _f , t _w)	= 7.0 mm				
Yield stress		f _y = 320 N/mn	1 ²				
Tensile strength		f _u = 440 N/mn	1 ²				
Modulus of elasticity		E = 200000 N	/mm²				
	↓ 7	→ 4 -5					
		◀133	→				
Capacity factors (φ) for strength Capacity factor	limit states - Ta	able 3.4 ₍₀ = 0.90					
Latoral rostraint		1 1 1 1 1					
		Snan 1 has la	teral restraint	at supports only	,		
			เอเล่าธิริเทิสแป	at supports only			
Section slenderness - Section 5.	2.2						
				050 NI/ 21 4	~ ~		
Flange slenderness		$\lambda_{ef} = (b_f - t_w) /$	$(2 \times t_f) \times \sqrt{[f_y]}$	$250 \text{ N/mm}^2\text{]} = 1$	0.3		

Tekla Tedds	Project Job Ref.					
Stantec	Thredbo - 1 Cr	IBC				
evel 6, Building B/207 Pacific Hwy, St Leonards. NSW 2065	Section Beam 1 (BM01	1)			Sheet no./rev.	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date
Web slenderness		$\lambda_{ew} = d_1 / t_w \times v_{ew}$	/[f _y / 250 N/mm ²]	= 42.5		
Web yield slenderness limit - Table	5.2	λ_{eyw} = 115		λ _{ew} / λ _{eyw} =	0.370	
Section slenderness		λ_s = 10.3				
Section plasticity limit - Table 5.2		$\lambda_{sp} = 9$				
Yield slenderness limit - Table 5.2		$\lambda_{sy} = 16$				
				$\lambda_{sp} < \lambda_s < \lambda$	_{sy} - Section is	non-compact
Shear capacity of webs - Section	5.11					
Design shear force		V* = max(abs(V _{max}), abs(V _{min}))	= 29.9 kN		
		d₁ / t _w < 82 / √[f _y / 250 N/mm²]			
	Nominal shea	r capacity of th	e web shall be	taken as the n	ominal shear	yield capacity
Shear yield capacity - Clause 5.1'	1.4					
Gross sectional area of web		A _w = A _y = 1010) mm²			
Nominal shear yield capacity		V_w = 0.6 \times f _y \times	A _w = 193.9 kN			
Shear capacity - Clause 5.11.1						
Nominal shear capacity - cl.5.11.2		V _v = V _w = 193 .	9 kN			
Design shear capacity		$V_{vc} = \phi \times V_v = \gamma$	174.5 kN			
		P	ASS - Design s	hear capacity e	exceeds desig	n shear force
Design for bending moment - Sec	ction 5.1		-		-	
Design bending moment		M* = max(abs(Ms1 max), abs(Ms	1 min)) = 30.6 kN	Im	
Section moment capacity for her	ding about a n		Soction 5.2			
Effective compact section modulus	- cl 5 2 3	$7_{\rm c} = \min(S_{\rm c}, 1)$	5 × 7) = 232000) mm ³		
Effective section modulus - cl 5.2.4	- 01.0.2.0	$Z_{c} = T_{u} + [(\lambda_{u})]$	-) / ())) ×	(7 - 7) = 227	469 mm ³	
Nominal section moment capacity	cl 5 2 1	$\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k$	72 8 kNm			
Design section moment capacity	01.0.2.1	$M_{s} = Iy \times 2e = I$ $M_{s} = \phi \times M_{s} = I$	65 5 kNm			
Segments with full lateral restrain	nt - Section 5.3	5.2 M – 0	kNm			
Larger segment end moment		$M_{o1} = - 0$	kNm			
End moment ratio		$\beta_m = -\Omega = 0$	0			
Maximum segment length - cl 5 3 2	4	$\int_{s1 \text{ max}} = r_0 \times (\beta)$	- 30 + 50 × β∞) × √	[250 N/mm ² / f./] = 2188 mm	
Maximum obginentiongen of oto.c.z			Seament is n	ot considered	to have full la	teral restraint
Mombor consolity of comments with	thout full later	al rootraint C-	ction E 6			
Moment at quarter point of segments	thout full laters	Ma* - 23 kNm	cuon 5.6			
Moment at center-line of segment	L	$M_2 = 23$ kNm $M_3^* = 30.6$ kNr	n			
Moment at three quarter point of se	ament	M ₄ * = 23 kNm				
Maximum moment in segment	0	M _m * = 30.6 kN	m			
Moment modification factor		$\alpha_{\rm m}$ = min(1.7 ×	M _m * / √[M ₂ *□² +	M ₃ * ² + M ₄ * ²], 2.5	5) = 1.166	
Twist restraint factor - Table 5.6.3(1)	$k_t = 1 + [2 \times (d$	₁ / L _{s1}) × (t _f / (2 ×	t _w)) ³] = 1.031		
Load height factor - Table 5.6.3(2)		k _i = 1.000				
Lateral rotation restraint factor - Tal	ble 5.6.3(3)	k _r = 1.000				
Effective length		$I_e = K_t \times K_I \times K_r$	× L _{s1} = 4229 mm			
Effective length Reference buckling moment - eq.5.	6.1.1(3)	$I_{e} = K_{t} \times K_{l} \times K_{r} \times K_{r$	× L _{s1} = 4229 mm τ ² × E × I _y / I _e ²) ×	$[G \times J + (\pi^2 \times E)]$	E × I _w / I _e ²)]] = 4	4.3 kNm

Tekla, Tedds	Project Thredbo - 1	Crackenback Dri	Job Ref. TBC	Job Ref. TBC				
Stantec Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Beam 1 (BM	101)	Sheet no./rev. 4					
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date		
Nominal member moment capacity	- eq.5.6.1.1(1) $M_b = min(\alpha_m)$	$\times \alpha_s$, 1) $\times M_s$ =	37.9 kNm				
Design member moment capacity		$M_{bc} = \varphi \times M_{b}$	= 34.1 kNm					
	F	PASS - Design m	ember mome	ent capacity ex	cceeds design be	nding moment		
Interaction of shear and bending	- Section 5.	12						
Nominal shear capacity with bendi	ng - cl.5.12.3	$V_{vm} = V_v = 19$	93.9 kN					
Design shear capacity with bending	g	$V_{vmc} = \phi \times V_v$	$V_{vmc} = \phi \times V_{vm} = 174.5 \text{ kN}$					
		PASS - Desig	n shear capa	city with bend	ing exceeds desi	gn shear force		
Serviceability limit state - Section	n 3.5							
Consider deflection due to perman	ent and impo	sed loads						
Limiting deflection		$\delta_{lim} = min(14)$	mm, L _{s1} / 250) = 14 mm				
Maximum deflection span 1		δ = max(abs	$(δ_{max})$, abs $(δ_{min})$)) = 9.26 mm				
		PA	ASS - Maximu	m deflection of	does not exceed	deflection limit		

Stantec	Project Thredbo - 1	1 Crackenback Dr	Job Ref. TBC			
el 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Column 1 (CO1)	Sheet no./rev 1			
	Calc. by BS	Date Chk'd by Date 3/14/2022 FTS			App'd by	Date
		· · · · · · · · · · · · · · · · · · ·				
STEEL MEMBER DESIGN (AS41	<u>00)</u> 8 in eern erst	ing Amondmont	No 1 2012			
in accordance with A54100-1996	o incorporat	ing Amendment	NO.1 2012		TEDDS cal	culation version 3.0
Section details						
Section type		89x89x5 SH	S C350 (BHP '	1999)		
Steel grade	_	C350				
From table 2.1: Strengths of ste	els					
I hickness of material		t = 5.0 mm	2			
Yield stress		$f_y = 350 \text{ N/m}$	m²			
Medulue of electicity		lu = 430 N/m	m² N/mm²			
modulus of elasticity	T	∟ - 200000				
	88		-▶ 5 ◀	-		
		89	→ 5 4	-		
Capacity factors (φ) for strength	limit states		→ 5 ◀	_		
Capacity factors (φ) for strength Capacity factor	limit states	- Table 3.4 φ = 0.90	→ 5 ◀	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint	limit states	- Table 3.4 φ = 0.90	→ 5 ←	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr	limit states	- Table 3.4 φ = 0.90 L _x = 2700 mi	, 5 •	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr	limit states aints aints	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr	m m	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors	limit states aints aints	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr	m m	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis	limit states aints aints s	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr k _{ex} = 1.200	m m	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis	limit states raints aints s s	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr k _{ex} = 1.200 k _{ey} = 1.200	m m	_		
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Section slenderness - Section 5	limit states aints aints s s .2.2	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr k _{ex} = 1.200 k _{ey} = 1.200	m m	_		
Capacity factors (♦) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis	limit states aints aints s s .2.2	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr k _{ex} = 1.200 k _{ey} = 1.200 λ _{ef} = (b - 2 ×	+ 5 € m m t) / t × √[fy / 250	_) N/mm²] = 18 .	.7	
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Section slenderness - Section 5 Flange slenderness Flange yield slenderness limit - Ta	limit states raints aints s s .2.2 able 5.2	- Table 3.4 φ = 0.90 L _x = 2700 mr L _y = 2700 mr k _{ex} = 1.200 k _{ey} = 1.200 λ _{ef} = (b - 2 × λ _{eyf} = 40	m m t) / t × √[fy / 250	_) N/mm²] = 18 . λef / λε	.7 eyf = 0.467	
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Section slenderness - Section 5 Flange slenderness Flange yield slenderness limit - Ta Web slenderness	limit states aints aints s s .2.2 able 5.2	- Table 3.4 $\phi = 0.90$ $L_x = 2700 \text{ mm}$ $L_y = 2700 \text{ mm}$ $k_{ex} = 1.200$ $k_{ey} = 1.200$ $\lambda_{ef} = (b - 2 \times \lambda_{eyf} = 40)$ $\lambda_{ew} = (d - 2 \times \lambda_{ew} = (d - 2))$	$f = \frac{1}{2} \int dt $	- 0 N/mm²] = 18 . λ _{ef} / λ _e 250 N/mm²] = 1	.7 eyf = 0.467 18.7	
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Effective length factor in minor axis Section slenderness - Section 5 Flange slenderness Flange yield slenderness limit - Tab Web yield slenderness limit - Tab	limit states aints aints s s .2.2 able 5.2 e 5.2	- Table 3.4 $\phi = 0.90$ $L_x = 2700 \text{ mm}$ $L_y = 2700 \text{ mm}$ $k_{ex} = 1.200$ $k_{ey} = 1.200$ $\lambda_{ef} = (b - 2 \times \lambda_{eyf} = 40)$ $\lambda_{ew} = (d - 2 \times \lambda_{eyw} = 115)$	m m $t) / t \times \sqrt{[f_y / 250]}$	- D N/mm²] = 18 . λ _{ef} / λ _e 250 N/mm²] = 1 λ _{ew} / λ	.7 eyf = 0.467 18.7 neyw = 0.163	
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Section slenderness - Section 5 Flange slenderness Flange yield slenderness limit - Tabl Web yield slenderness	limit states aints aints s s .2.2 able 5.2 e 5.2	- Table 3.4 $\phi = 0.90$ $L_x = 2700 \text{ mm}$ $L_y = 2700 \text{ mm}$ $k_{ex} = 1.200$ $k_{ey} = 1.200$ $\lambda_{ef} = (b - 2 \times \lambda_{eyf} = 40)$ $\lambda_{ew} = (d - 2 \times \lambda_{eyw} = 115)$ $\lambda_s = 18.7$	$ = \int_{a}^{b} \int_{a}^{b} \left(\frac{1}{y} \right)^{b} dx^{2} $ $ = \int_{a}^{b} \int_{a}^{b} \frac{1}{y} dx^{2} dx$	- 0 N/mm²] = 18 . λ _{ef} / λ _e 250 N/mm²] = 1 λ _{ew} / λ	.7 eyf = 0.467 18.7 eyw = 0.163	
Capacity factors (♦) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Section slenderness - Section 5 Flange slenderness Flange yield slenderness limit - Tab Web slenderness Web yield slenderness Section slenderness Section slenderness	limit states aints aints s s s .2.2 able 5.2 e 5.2	- Table 3.4 $\phi = 0.90$ $L_x = 2700 \text{ mm}$ $L_y = 2700 \text{ mm}$ $k_{ex} = 1.200$ $k_{ey} = 1.200$ $\lambda_{ef} = (b - 2 \times \lambda_{eyf} = 40)$ $\lambda_{eyw} = (d - 2 \times \lambda_{eyw} = 115)$ $\lambda_s = 18.7$ $\lambda_{sp} = 30$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	- D N/mm²] = 18 . λef / λε 250 N/mm²] = 1 λew / λ	.7 eyf = 0.467 18.7 eyw = 0.163	
Capacity factors (φ) for strength Capacity factor Lateral restraint Distance between major axis restr Distance between minor axis restr Effective length factors Effective length factor in major axis Effective length factor in minor axis Section slenderness - Section 5 Flange slenderness Flange yield slenderness limit - Tab Web slenderness Web yield slenderness limit - Tabl Section slenderness Section plasticity limit - Table 5.2 Yield slenderness limit - Table 5.2	limit states aints aints s s s.2.2 able 5.2 e 5.2	- Table 3.4 $\phi = 0.90$ $L_x = 2700 \text{ mm}$ $L_y = 2700 \text{ mm}$ $k_{ex} = 1.200$ $k_{ey} = 1.200$ $\lambda_{ef} = (b - 2 \times \lambda_{eyf} = 40)$ $\lambda_{ew} = (d - 2 \times \lambda_{eyw} = 115)$ $\lambda_s = 18.7$ $\lambda_{sp} = 30$ $\lambda_{sv} = 40$	m m $t) / t \times \sqrt{[f_y / 250]}$	- D N/mm²] = 18 . λ _{ef} / λ _e 250 N/mm²] = 1 λ _{ew} / λ	.7 eyf = 0.467 18.7 eyw = 0.163	

Tekla Tedds	Project Job Ref. Thredbo - 1 Crackenback Drive TBC					
Stantec	Section				Sheet no./rev.	
NSW 2065	Column 1 (CC	01)			2	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date
Design for bending moment - Se	ection 5.1		·			·
Design bending moment		M* = 0.4 kNm				
Section moment capacity for be	nding about a _l	principal axis -	Section 5.2			
Effective section modulus - cl.5.2.3	3	Z _e = min(S _x , 1	.5 × Z _x) = 4921	0 mm ³		
Nominal section moment capacity	- cl.5.2.1	$M_s = f_y \times Z_e =$	17.2 kNm			
Design section moment capacity		$M_{sc} = \phi \times M_s =$	15.5 kNm			
Segments with full lateral restra	int - Section 5.	3.2				
End moment ratio		β _m = -1.000				
Maximum segment length - cl.5.3.2	2.4	$L_{s_max} = r_y \times (1)$	800 + 1500 × β	B_m) × (b / d) × (2	250 N/mm² / f _y) =	7236 mm
	_		Segn	nent considere	ed to have full la	teral restraint
	PA	ASS - Design se	ection moment	t capacity exc	eeds design ber	nding moment
Members subject to axial compr	ession - Sectio	on 6				
Design compression force		N* = 59.8 kN				
Cross-sectional area of holes		$A_h = 0 \text{ mm}^2$	1501 mm ²			
		n - ng - nn -	1554 11111			
Nominal section capacity - Section	on 6.2	a . - 40				
Effective width of flanges of 6.2.4	DIE 0.2.4	$h_{eyf} - 40$	$(1, 1) \times (h, 2)$	v t) - 79.0 mm		
Web vield slenderness limit - Tabl	-621	$D_{ef} = \Pi \Pi (\lambda_{eyf})$	∧et, T) × (D - Z	× () – 79.0 mm		
Effective width of web - cl 6 2 4	5 0.2.4	$h_{eyw} = min(\lambda_{eyw})$	/λ _{ow} 1) × (d -	2 × t) = 79 0 m	m	
Effective area of section		$A_{e} = A_{a} - 2 \times [$	(b - 2 × t) - b _{ef} -l	- (d - 2 × t) - b	 √] × t = 1594 mm²	2
Form factor - cl.6.2.2		$k_f = A_e / A_a = r$	1.000	(.]	
Nominal section capacity in compr	ession - cl.6.2.1	$N_s = k_f \times A_n \times$	f _y = 557.9 kN			
Design section capacity in compre	ssion	$N_{sc} = \phi \times N_s =$	502.1 kN			
Nominal member capacity in ma	jor (x-x) axis -	Section 6.3				
Effective length for buckling		$I_{ex} = L_x \times k_{ex} =$	3240 mm			
Modified compression member sle	nderness	$\lambda_{nx} = I_{ex} / r_x \times f$	$\sqrt{[k_f]} \times \sqrt{[f_y / 250]}$	N/mm ²] = 113 .	.521	
Compression member factor		$lpha_{ax}$ = 2100 $ imes$ ([λ _{nx} - 13.5) / (λ _n	$_{x}^{2}$ - 15.3 $ imes$ λ_{nx} +	2050) = 15.912	
Member section constant - Table 6	6.3.3(1)	α _b = -0.5				
Slenderness ratio		$\lambda_x = \lambda_{nx} + \alpha_{ax}$	× α _b = 105.565			
Compression member imperfection	n factor	$\eta_x = 0.00326$	× (λ _x - 13.5) = (.300		
Compression member factor		$\xi_x = ((\lambda_x / 90)^2)$	² + 1 + η _x) / (2 ×	$(\lambda_x / 90)^2) = 0.$	972	
Member slenderness reduction fac	tor	α_{cx} = $\xi_x \times [1 -$	√[1 - (90 / (ξ _x ×	λ _x)) ²]] = 0.505		
Nominal member capacity in comp	pression - cl.6.3	.3 $N_{cx} = \alpha_{cx} \times N_s$	= 281.5 kN			
Design member capacity in compr	ession	$N_{cxc} = \phi \times N_{cx}$	= 253.4 kN			
Nominal member capacity in mi	nor (y-y) axis -	Section 6.3				
Effective length for buckling		$I_{ey} = L_y \times k_{ey} =$	3240 mm			
Modified compression member sle	nderness	$\lambda_{ny} = I_{ey} / r_y \times f$	$\sqrt{[k_f]} \times \sqrt{[f_y/250]}$	N/mm ²] = 113 .	521	
Compression member factor		α_{ay} = 2100 × (λ _{ny} - 13.5) / (λ _n	γ^{2} - 15.3 × λ_{ny} +	2050) = 15.912	
Member section constant - Table 6	6.3.3(1)	α _b = -0.5				
Slenderness ratio		$\lambda_y = \lambda_{ny} + \alpha_{ay}$	× α _b = 105.565			

Tekla Tedds	Project Thredbo - 1 Crackenback Drive				Job Ref. TBC					
Level 6, Building B/207 Pacific Hwy, St Leonards	Section	·O1)			Sheet no./rev.					
NSW 2065		,01)			5	1				
	Calc. by	Date	Chk'd by	Date	App'd by	Date				
	во	3/14/2022	FIS							
Compression member imperfection	factor	$n_v = 0.00326$	$5 \times (\lambda_{y} - 13.5) =$: 0.300						
Compression member faster		$f_{1y} = 0.00020 \times (Ny - 10.0) = 0.000$								
Compression member lactor	Compression member factor		$\zeta_y = ((\Lambda_y / 90)^2 + 1 + \eta_y) / (2 \times (\Lambda_y / 90)^2) = 0.972$							
Member slenderness reduction factor		$\alpha_{cy} = \xi_y \times [1 - \sqrt{[1 - (90 / (\xi_y \times \lambda_y))^2]}] = 0.505$								
Nominal member capacity in comp	Nominal member capacity in compression - cl.6.3			.3.3 $N_{cy} = \alpha_{cy} \times N_s = 281.5 \text{ kN}$						
Design member capacity in compre	Design member capacity in compression			$N_{cyc} = \phi \times N_{cy} = 253.4 \text{ kN}$						
	PA	ASS - Design ca	pacity in com	pression exc	eeds design col	mpression force				
Members subject to combined a	ctions - Secti	on 8								
Nominal section moment capacity	- cl.8.3.2	Mr = Ms = 17	.2 kNm							
Design section moment capacity		$M_{rc} = \phi \times M_r = 15.5 \text{ kNm}$								
End moment ratio		β _m = -1.000								
Nominal member moment capacity	- cl.8.4.2.2	$M_{i} = min(M_{s} \times ([1 - ((1 + \beta_{m}) / 2)^{3}] \times (1 - N^{*} / (\phi \times N_{cx})) + 1.18 \times ((1 + \beta_{m}) / 2)^{3}] \times (1 - N^{*} / (\phi \times N_{cx})) + 1.18 \times ((1 + \beta_{m}) / 2)^{3}]$								
				$2)^{3} \times \sqrt{(1 - N^{*} / (\phi \times N_{cx})))}, M_{r}) = 13.2 \text{ kNm}$						
Design member moment capacity		$M_{ic} = \phi \times M_i = 11.8 \text{ kNm}$								
	PASS - Combined axial and bending check is satisfied									

Tekla Tedds	Project Thredbo - 1 Crackenback Drive				Job Ref. TBC	
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Column 2 (CO2)				Sheet no./rev. 1	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date

TIMBER MEMBER DESIGN TO AS1720.1-2010

Analysis results

Design moment in major axis Design moment in minor axis Design axial compression

Timber section details

Breadth of timber sections	b = 45 mm
Depth of timber sections	d = 90 mm
Number of timber sections in member	N = 4
Overall breadth of timber member	b _b = N × b = 180 mm
Timber species	Mixed softwood species (excl.Pinus species)
Moisture condition	Seasoned
Timber strength grade - Table H3.1	MGP10
Member details	
Load duration - cl.2.4.1	Standard test
Equilibrium moisture content	15 %
Overall length of member	L _x = 2700 mm
Effective length factor - Table 3.2	g ₁₃ = 0.75
Distance between lateral restraints in major axis	L _{ax} = 2700 mm
Distance between lateral restraints in minor axis	L _{ay} = 2700 mm
Section properties	
Cross sectional area of member	A = N × b × d = 16200 mm ²
Section modulus	$Z_x = N \times b \times d^2 / 6 = 243000 \text{ mm}^3$
	$Z_y = d \times (N \times b)^2 / 6 = 486000 \text{ mm}^3$
Second moment of area	$I_x = N \times b \times d^3 / 12 = 10935000 \text{ mm}^4$
	l _y = d × (N × b) ³ / 12 = 43740000 mm ⁴
Radius of gyration	r _x = √(I _x / A) = 26.0 mm
	r _y = √(I _y / A) = 52.0 mm
Modification factors	
Duration of load factor for strength - Table 2.3	k ₁ = 1.00
Moisture condition factor - cl.2.4.2.3	k ₄ = 1.00
Temperature factor - cl.2.4.3	k ₆ = 1.00
Length and position of bearing factor - cl.2.4.4	k ₇ = 1.00
Strength sharing factor - Table 2.7	k ₉ = 1.24

Tedds calculation version 1.7.04

Tekla Tedds	Project Thredbo - 1 C	rackenback Driv	Job Ref. TBC						
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Column 2 (CC	Section Column 2 (CO2)							
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date			
Temporary design action ratio		r = 0.25							
Material constant - exp.E2(1)		ρ _b = 14.71 × (I	Ξ / f' _b) ^{-0.480} × r ⁻¹	^{0.061} = 0.75					
Distance between discrete lateral re	estraints	L _{ay} = 2700 mn	n	L _{ay} / d	< 64 \times [N \times b / (_f	$(p_b \times d)]^2$			
Major axis slenderness coefficient -	- cl.3.2.3.2(b)	S ₁ = 0.00							
Major axis bending stability factor -	exp.3.2(10)	k _{12bx} = 1.00							
Minor axis slenderness coefficient -	- cl.3.2.3.2 (c)	S ₂ = 0.00							
Minor axis bending stability factor -	cl.3.2.4	k _{12by} = 1.00							
Material constant - exp.E2(3)		$\rho_{c} = 11.39 \times (10^{-5})$	Ξ / f'c) ^{-0.408} × r ⁻⁰	^{0.074} = 0.96					
Major axis slenderness coefficient -	- 3.3(6)	$S_3 = g_{13} \times L_x / d = 22.50$							
Major axis comp.stability factor - ex	p.3.3(11c)	k _{12cx} = 200 / (ρ	$k_{12cx} = 200 / (\rho_c \times S_3)^2 = 0.43$						
Minor axis slenderness coeff exp	.3.3(8) & (9)	$S_4 = min(L_{ay} / $	(N × b), g_{13} ×	$L_x / (N \times b)) = '$	11.25				
Minor axis comp.stability factor - ex	p.3.3(11b)	$k_{12cy} = 1.5 - 0.1$	$05 \times \rho_c \times S_4 =$	0.96					
Bending strength - cl.3.2.1									
Capacity factor - Table 2.1		$\phi_{\rm b}$ = 0.9							
Design capacity in major axis bend	ing - cl.3.2(2)	$\phi M_x = \phi_b \times k_1 >$	$(\mathbf{k}_4 \times \mathbf{k}_6 \times \mathbf{k}_9)$	$k_{12bx} \times f'_b \times Z_x$	= 4.610 kNm				
Design capacity in minor axis bend	ing - cl.3.2(2)	$\phi M_y = \phi_b \times k_1 >$	$(\mathbf{k}_4 \times \mathbf{k}_6 \times \mathbf{k}_9 \times \mathbf{k}_9)$	$k_{12by} \times f'_b \times Z_y$	= 9.220 kNm				
		PASS - Des	ign capacity	in bending ex	ceeds design b	ending moment			
Compressive strength - cl.3.3.1									
Capacity factor - Table 2.1		$\phi_c = 0.9$							
Cross-sectional area of member		$A_c = N \times b \times d$	= 16200 mm ²	2					
Major axis design capacity in comp	ression - exp.3	.3(2)							
		$\phi N_{cx} = \phi_c \times k_1$	\times k ₄ \times k ₆ \times k ₁₂₀	$f_{cx} \times f_{c} \times A_{c} = 11$	I3.042 kN				
Minor axis design capacity in comp	ression - exp.3	.3(2)							
		$\phi N_{cy} = \phi_c \times k_1$	\times k ₄ \times k ₆ \times k ₁₂₀	$c_{y} \times f_{c} \times A_{c} = 25$	5 2.283 kN				
		PASS - Desig	n capacity ir	n compression	n exceeds desig	gn compression			
Beam-column bent about both a	kes - Appendix	c E5							
Beam-column bent about both axes	s check - exp.E	5(1) and E5(2)							
		[M* _x / ϕ M _x] ² + [[M*y / \$\$My] + [N	N* _c / φN _{cy}] = 0.2	74 < 1				
		[M* _x / ϕ M _x] + [N	M* _y / ϕ M _y] ² + [N	N* _c / φN _{cx}] = 0.5	95 < 1				
		PASS - Beam d	esign meets	combined ber	nding and com	pression criteria			

Tekla Tedds	Project				Job Ref.	
Stantec						
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Joist 1				Sheet no./rev 2	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date
Design moment Maximum shear Design shear Total load on member Reactions at support A Unfactored permanent load reaction Unfactored live load reaction at sup Reactions at support B Unfactored permanent load reaction Unfactored live load reaction at sup $\int_{B} \int_{C} \int_{C$	n at support A port A n at support B port B	$M^* = max(abs($ $V_{max} = 3.368$ k $V^* = max(abs($ $W_{tot} = 6.736$ k $R_{A_max} = 3.368$ $R_{A_Permanent} = 1$ $R_{A_Live} = 1.418$ $R_{B_max} = 3.368$ $R_{B_Permanent} = 1$ $R_{B_Live} = 1.417$	(M _{max}),abs(M _m N V _{max}),abs(V _{min} N kN .035 kN kN .035 kN kN	ain)) = 3.536 kN V _{min} = - (h)) = 3.368 kN R _{A_min} = R _{B_min} =	m 3.368 kN = 3.368 kN = 3.368 kN	
Timber section details Breadth of timber sections Depth of timber sections Number of timber sections in memb Overall breadth of timber member Timber species Moisture condition Timber strength grade - Table H3.1	ver	$b = 45 \text{ mm}$ $d = 190 \text{ mm}$ $N = 1$ $b_b = N \times b = 44$ Mixed softwo Seasoned MGP10	5 mm od species (excl.Pinus spe	ecies)	
Member details Load duration - cl.2.4.1 Equilibrium moisture content Length of span Length of bearing Number of discrete parallel systems Centre-to-centre spacing of discrete	s systems	Standard test 15 % $L_{s1} = 4200 \text{ mm}$ $L_{b} = 100 \text{ mm}$ $N_{mem} = 10$ s = 450 mm	1			
Section properties Cross sectional area of member Section modulus		$A = N \times b \times d =$ $Z_x = N \times b \times d^2$ $Z_y = d \times (N \times b)$	= 8550 mm² ² / 6 = 270750))² / 6 = 64125	mm ³ 5 mm ³		
Second moment of area Radius of gyration		$I_{x} = N \times b \times d^{3}$ $I_{y} = d \times (N \times b)$ $r_{x} = \sqrt{(I_{x} / A)} =$ $r_{y} = \sqrt{(I_{y} / A)} =$	/ 12 = 25721 2 ³ / 12 = 1442 3 54.8 mm 13.0 mm	250 mm⁴ 812 mm⁴		
Modification factors Duration of load factor for strength - Moisture condition factor - cl.2.4.2.3	- Table 2.3	$k_1 = 1.00$ $k_4 = 1.00$				

Tekla Tedds	Project Thredbo - 1 (Crackenback Driv	Job Ref. TBC				
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Joist 1		Sheet no./rev. 3				
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date	
						1	
Temperature factor - cl.2.4.3	T	k ₆ = 1.00					
Length and position of bearing fact	or - Table 2.6	$K_7 = 1.00$	hinad narallal	ovetem Table	07		
Geometric factor appropriate to the			bined parallel	system - Table	2.1		
Geometric factor appropriate to the	number of me	931 - 1.00 Mores in a disci	rete system - ⁻	Table 2.7			
		g ₃₂ = 1.33					
Strength sharing factor (cl. 2.4.5.3)		$k_9 = max(1.0)$. a ₃₁ + (a ₃₂ - a ₃	s1) × [1 - 2 × s /	L _x]) = 1.26		
Temporary design action ratio		r = 0.25	, <u>3</u> 01 (<u>3</u> 02 <u>3</u> 0	., []			
Material constant - exp.E2(1)		ρ _b = 14.71 × ((E / f' _b) ^{-0.480} × r	^{-0.061} = 0.73			
Distance between discrete lateral r	estraints	L _{av} = 0 mm	`	L _{av} / d	< 64 × [N × b / ($(b_b \times d)]^2$	
Major axis slenderness coefficient	- cl.3.2.3.2(b)	S ₁ = 0.00		2		/-	
- Major axis bending stability factor -	exp.3.2(10)	k _{12bx} = 1.00					
Minor axis slenderness coefficient	- cl.3.2.3.2 (c)	S ₂ = 0.00					
Minor axis bending stability factor -	cl.3.2.4	k _{12by} = 1.00					
Bearing strength - cl.3.2.6							
Capacity factor - Table 2.1		$\phi_p = 0.9$					
Bearing area for loading perpendic	ular to grain	$A_p = N \times b \times I$	L _b = 4500 mm	2			
Design capacity in bearing - exp.3.	2(16)	$\phi N_p = \phi_p \times k_1$	\times k ₄ \times k ₆ \times k ₇ \Rightarrow	× f' _p × A _p = 27.5	5 40 kN		
PAS	SS - Design ca	pacity in bearin	ng perpendici	ular to the gra	in exceeds desi	gn bearing load	
Bending strength - cl.3.2.1							
Capacity factor - Table 2.1		$\phi_{\rm b}$ = 0.9					
Design capacity in bending - cl.3.2	(2)	$\phi M = \phi_b \times k_1 \times k_4 \times k_6 \times k_9 \times k_{12bx} \times f_b \times Z_x = 4.910 \text{ kNm}$					
		PASS - Des	sign capacity	in bending ex	ceeds design b	ending moment	
Flexural shear strength - cl.3.2.5							
Capacity factor - Table 2.1		$\phi_s = 0.9$					
Shear plane area		$A_s = N \times b \times c$	d × 2 / 3 = 570	0 mm ²			
Design shear capacity - exp.3.2(14	.)	$\phi V = \phi_s \times k_1 \times$	$ imes k_4 imes k_6 imes f'_s imes$	As = 12.825 kN	٨		
		1	PASS - Desig	in shear capac	city exceeds des	sign shear force	
Deflection - AS/NZS 1170.0							
Deflection limit - Table C1		$\delta_{\text{lim}} = \text{Min}(20$	mm, $0.004 \times L$	_₅1) = 16.800 m	ım		
Deflection due to permanent load		δ _G = 7.990 m	m				
Deflection due to imposed load		δ _Q = 10.945 r	nm				
Load factor - Table 4.1		ψ = 0.7					
Creep factor (Standard test)		j ₂ = 1.000					
Total deflection		$\delta_{tot} = j_2 \times (\delta_G \cdot$	+ ψ × δ ρ) = 15	.651 mm			
			PASS - To	otal deflection	is less than the	e deflection limit	

Tekla Tedds	Project				Job Ref.	
Stantec	Thredbo - 1 Cr	ackenback Drive	9		TBC	
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Joist 2				Sheet no./rev 2	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date
Design moment Maximum shear Design shear Total load on member Reactions at support A Unfactored permanent load reaction Unfactored live load reaction at sup Reactions at support B Unfactored permanent load reaction Unfactored live load reaction at sup $\prod_{g \in I_{g}}$	n at support A port A n at support B port B	$M^* = max(abs($ $V_{max} = 3.841 \text{ k}$ $V^* = max(abs($ $W_{tot} = 7.683 \text{ kl}$ $R_{A_max} = 3.841$ $R_{A_Permanent} = 1$ $R_{A_Live} = 1.384$ $R_{B_max} = 3.841$ $R_{B_Permanent} = 1$ $R_{B_Live} = 1.384$	[M _{max}),abs(M _m N V _{max}),abs(V _{mir} N kN .471 kN kN .471 kN kN	hin)) = 3.937 kNi Vmin = - h)) = 3.841 kN RA_min = RB_min =	m 3.841 kN = 3.841 kN = 3.841 kN	
Timber section details Breadth of timber sections Depth of timber sections Number of timber sections in memb Overall breadth of timber member Timber species Moisture condition Timber strength grade - Table H3.1	ber	b = 45 mm d = 190 mm N = 1 b _b = N × b = 4 Mixed softwo Seasoned MGP10	5 mm od species (excl.Pinus spe	ecies)	
Member details Load duration - cl.2.4.1 Equilibrium moisture content Length of span Length of bearing Number of discrete parallel systems Centre-to-centre spacing of discrete	s e systems	Standard test 15 % $L_{s1} = 4100 \text{ mm}$ $L_b = 100 \text{ mm}$ $N_{mem} = 10$ s = 450 mm	1			
Section properties Cross sectional area of member Section modulus		$A = N \times b \times d =$ $Z_x = N \times b \times d^2$ $Z_y = d \times (N \times b)$	= 8550 mm² ² / 6 = 270750))² / 6 = 64125	mm ³ 5 mm ³		
Second moment of area Radius of gyration		$I_x = N \times b \times d^3$ $I_y = d \times (N \times b)$ $r_x = \sqrt{(I_x / A)} = 1$ $r_y = \sqrt{(I_y / A)} = 1$	/ 12 = 25721 2 ³ / 12 = 1442 3 54.8 mm	250 mm⁴ 812 mm⁴		
Modification factors Duration of load factor for strength - Moisture condition factor - cl.2.4.2.3	Table 2.3	$k_1 = 1.00$ $k_4 = 1.00$				

Tekla Tedds	Project Thredbo - 1 (Crackenback Dr	Job Ref. TBC			
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Joist 2				Sheet no./rev 3	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date
Temperature factor - cl.2.4.3		k ₆ = 1.00				
Length and position of bearing fact	or - Table 2.6	k ₇ = 1.00				
Geometric factor appropriate to the	number of me	embers in a com	bined parallel	system - Table	2.7	
		g ₃₁ = 1.00				
Geometric factor appropriate to the	number of me	embers in a disc	rete system -	Table 2.7		
		g ₃₂ = 1.33				
Strength sharing factor (cl. 2.4.5.3)		k₀ = max(1.0	, g ₃₁ + (g ₃₂ - g ₃	81) × [1 - 2 × s /	L _x]) = 1.26	
Temporary design action ratio		r = 0.25				
Material constant - exp.E2(1)		ρ _b = 14.71 ×	$(E / f_b)^{-0.480} \times r$	^{-0.061} = 0.73		
Distance between discrete lateral r	estraints	L _{ay} = 0 mm		L _{ay} / d	< 64 × [N × b / ($p_b \times d)]^2$
Major axis slenderness coefficient	- cl.3.2.3.2(b)	S ₁ = 0.00				
Major axis bending stability factor -	exp.3.2(10)	$k_{12bx} = 1.00$				
Minor axis signating stability faster	- CI.3.2.3.2 (C)	$S_2 = 0.00$				
Minor axis bending stability factor -	CI.3.2.4	$K_{12by} = 1.00$				
Bearing strength - cl.3.2.6						
Capacity factor - Table 2.1		$\phi_{\rm p} = 0.9$		_		
Bearing area for loading perpendic	ular to grain	$A_p = N \times b \times$	L _b = 4500 mm	2		
Design capacity in bearing - exp.3.	2(16)	$\phi \mathbf{N}_{\mathrm{p}} = \phi_{\mathrm{p}} \times \mathbf{k}_{1}$	\times k ₄ \times k ₆ \times k ₇ \approx	× f' _p × A _p = 27.5	540 kN	
PAS	SS - Design ca	pacity in beari	ng perpendici	ular to the gra	in exceeds des	ign bearing load
Bending strength - cl.3.2.1						
Capacity factor - Table 2.1		$\phi_{\rm b}$ = 0.9				
Design capacity in bending - cl.3.2	(2)	$\phi M = \phi_b \times k_1$	\times k ₄ \times k ₆ \times k ₉ \times	$k_{12bx} \times f'_b \times Z_x$	= 4.903 kNm	
		PASS - De	sign capacity	in bending ex	ceeds design b	ending moment
Flexural shear strength - cl.3.2.5						
Capacity factor - Table 2.1		$\phi_s = 0.9$				
Shear plane area		$A_s = N \times b \times$	d × 2 / 3 = 570	10 mm ²		
Design shear capacity - exp.3.2(14)	$\phi V = \phi_s \times k_1$:	\times k ₄ \times k ₆ \times f' _s \times	As = 12.825 kN	J	
			PASS - Desig	in shear capao	city exceeds de	sign shear force
Deflection - AS/NZS 1170.0						
Deflection limit - Table C1		$\delta_{\text{lim}} = \text{Min}(20)$	mm, 0.004 × L	_{_s1}) = 16.400 m	ım	
Deflection due to permanent load		δ _G = 10.583	mm			
Deflection due to imposed load		δ _Q = 9.953 m	ım			
Load factor - Table 4.1		ψ = 0.7				
Creep factor (Standard test)		j ₂ = 1.000				
Total deflection		δ_{tot} = $j_2 \times (\delta_G$	+ ψ × δ _Q) = 17	.550 mm		
			FAIL	- Total deflect	ion exceeds the	e deflection limit

Tekla Tedds Stantec Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Project Thredbo - 1 Crackenback Drive				Job Ref. TBC	
	Section Footing 1 (FT01)				Sheet no./rev. 1	
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date

STRIP FOOTING ANALYSIS AND DESIGN (AS3600)

In accordance with AS3600-2018 incorporating Amendment No. 1

TEDDS calculation version 2.0.07

Strip footing details		
Width of strip footing	B = 450 mm	
Depth of strip footing	h = 450 mm	
Depth of soil over strip footing	h _{soil} = 180 mm	
Density of concrete	ρ_{conc} = 23.6 kN/m ³	
Load details		
Load width	b = 350 mm	
Load eccentricity	e _P = -50 mm	
Soil details		
Density of soil	ρ_{soil} = 20.0 kN/m ³	
Design shear strength	φ' = 25.0 deg	
Design base friction	δ = 19.3 deg	
Ultimate design bearing capacity	P _{bearing} = 250 kN/m ²	
Load factors for stability		
Dead load factor - stabilizing	$\gamma_{sG} = 0.90$	
Dead load factor - destabilizing	γ _{dG} = 1.35	
Imposed load factor - destabilizing	γ _{dQ} = 1.50	
Wind load factor - destabilizing	γ _{dW} = 1.00	
Axial loading on strip footing		
Dead axial load	P _G = 20.0 kN/m	

Tekla Tedds	Tedds Project Thredbo - 1 Crackenback Drive						
Level 6, Building B/207 Pacific Hwy, St Leonards NSW 2065	Section Footing 1 (F	- T01)	Sheet no./rev. 2				
	Calc. by BS	Date 3/14/2022	Chk'd by FTS	Date	App'd by	Date	
Imposed axial load		P _Q = 20.0 kN	l/m				
Wind axial load		Pw = 0.0 kN/	m				
Total axial load		$P=\gamma_{dG}\timesP_{G}$	+ $\gamma_{dQ} \times P_Q$ + γ_{dV}	w × Pw = 56.9	kN/m		
Foundation loads							
Dead surcharge load	F _{Gsur} = 0.000 kN/m ²						
Imposed surcharge load	F _{Qsur} = 7.700 kN/m ²						
Strip footing self weight	F_{swt} = h × ρ_{conc} = 10.620 kN/m ²						
Soil self weight	$F_{soil} = h_{soil} \times \rho_{soil} = 3.600 \text{ kN/m}^2$						
Total foundation load	F = [γ _{dG} × (F _{Gsur} + F _{swt} + F _{soil}) + γ _{dQ} × F _{Qsur}] × B = 13.8 kN/m] × B = 13.8 kN/m		
Calculate base reaction							
Total base reaction		T = F + P = 7	70.8 kN/m				
Eccentricity of base reaction in x		$e_T = (P \times e_P \cdot$	+ M + H × h) / ⁻	T = -40 mm			
			В	ase reaction	acts within midd	le third of base	
Calculate base pressures							
		q1 = (T / B) ×	(1 - 6 × e _T / B)) = 241.541 kM	N/m ²		
		$q_2 = (T / B) \times$	(1 + 6 × e⊤ / B) = 72.906 kN	/m²		
Minimum base pressure	$q_{min} = min(q_1, q_2) = 72.906 \text{ kN/m}^2$						
Maximum base pressure	q _{max} = max(q ₁ , q ₂) = 241.541 kN/m ²						
Factor of safety for base pressure	$e \qquad F_{sb} = P_{bearing} / q_{max} = 1.035$						
	PA	SS - Maximum b	ase pressure	is less than ι	ıltimate design be	earing capacity	